The growth of Escherichia coli cultures under the influence of pheomelanin nanoparticles and a chelant agent in the presence of light

在光照条件下,大肠杆菌培养物在褐黑素纳米颗粒和螯合剂的影响下生长

阅读:5
作者:Denisse Fuentes-López, Daniel Ortega-Zambrano, María Antonieta Fernández-Herrera, Hilda Mercado-Uribe

Abstract

Growing concern of antibiotic resistance has increased research efforts to find nonspecific treatments to inhibit pathogenic microorganisms. In this regard, photodynamic inactivation is a promising method. It is based on the excitation of a photosensitizer molecule (PS) with UV-Vis radiation to produce reactive oxygen species. The high reactivity of such species nearby the PS leads to oxidation of bacterial cell walls, lipid membranes (lipid peroxidation), enzymes, and nucleic acids, eventually producing cell death. In the last decade, many studies have been carried out with different photosensitizers to suppress the growth of bacteria, fungi, viruses, and malignant tumors. Here, our main motivation is to employ pheomelanin nanoparticles as sensitizers for inhibiting the growth of the Gram-negative bacteria E. coli, exposed to blue and UVA radiation. In order to perform our experiments, we synthesized pheomelanin nanoparticles from L-DOPA and L-cysteine through an oxidation process. We carried out experiments at different particle concentrations and different energy fluences. We found that cultures exposed to UVA at 166 μg/mL and 270 J/cm2, in conjunction with ethylenediaminetetraacetic acid (EDTA) as an enhancer, decreased in the viable count 5 log10. Different reactive oxygen species (singlet oxygen, hydroxyl radicals, and peroxynitrates) were detected using different procedures. Our results suggest that the method reported here is effective against E. coli, which could encourage further investigations in other type of bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。