Shear stress-stimulated AMPK couples endothelial cell mechanics, metabolism and vasodilation

剪切应力刺激的 AMPK 将内皮细胞力学、代谢和血管舒张结合起来

阅读:10
作者:Nicholas M Cronin, Logan W Dawson, Kris A DeMali

Abstract

Endothelial cells respond to mechanical force by stimulating cellular signaling, but how these pathways are linked to elevations in cell metabolism and whether metabolism supports the mechanical response remains poorly understood. Here, we show that the application of force to endothelial cells stimulates VE-cadherin to activate liver kinase B1 (LKB1; also known as STK11) and AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis. VE-cadherin-stimulated AMPK increases eNOS (also known as NOS3) activity and localization to the plasma membrane, reinforcement of the actin cytoskeleton and cadherin adhesion complex, and glucose uptake. We present evidence for the increase in metabolism being necessary to fortify the adhesion complex, actin cytoskeleton and cellular alignment. Together, these data extend the paradigm for how mechanotransduction and metabolism are linked to include a connection to vasodilation, thereby providing new insight into how diseases involving contractile, metabolic and vasodilatory disturbances arise.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。