Endothelial cell-derived SSAO can increase MLC20 phosphorylation in VSMCs

内皮细胞衍生的 SSAO 可增加 VSMC 中的 MLC20 磷酸化

阅读:4
作者:Yuxing Zhang, Xiliang Zhang, Zhen Cao, Yun Huang, Yuexin Zheng, Xiaodong Yang

Abstract

Vascular hyporesponsiveness in the shock decompensation period is an important factor leading to death. Myosin light chain 20 (MLC20) is the main effector protein that regulates vascular reactivity. However, whether the change in semicarbazide-sensitive amine oxidase (SSAO) expression during hypoxia can change the MLC20 phosphorylation level, and its underlying mechanism were not clear. The amine oxidase copper containing 3 (AOC3) overexpressing adenovirus vector was constructed and transfected into rat intestinal microvascular endothelial cells (RIMECs) to overexpress SSAO, and the RIMECs were co-cultured with rat intestinal microvascular smooth muscle cells (RIMSCs). The changes in SSAO/inducible nitric oxide synthase (iNOS)/Rho associate coiled-coil containing protein kinase 1 (ROCK1) expression levels and MLC20 phosphorylation level were detected. Here we found that the increased SSAO by AOC3 overexpression can decrease the iNOS expression level and its activity after hypoxia. In addition, RIMSCs co-cultured with RIMECs overexpressed with AOC3 gene had significantly higher ROCK1 protein level and MLC20 phosphorylation level than RIMSCs co-cultured with normal RIMECs. Our study demonstrated that SSAO overexpression can significantly inhibit iNOS activity, promote RhoA/ROCK pathway activation, and increase the phosphorylation level of MLC20, which might be the potential mechanism in relieving the vascular hyporesponsiveness during shock decompensation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。