Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in tumor cells

Rab5 激活促进肿瘤细胞的粘着斑分解、迁移和侵袭

阅读:10
作者:Pablo Mendoza, Rina Ortiz, Jorge Díaz, Andrew F G Quest, Lisette Leyton, Dwayne Stupack, Vicente A Torres

Abstract

Migration and invasion are essential steps associated with tumor cell metastasis and increasing evidence points towards endosome trafficking being essential in this process. Indeed, the small GTPase Rab5, a crucial regulator of early endosome dynamics, promotes cell migration in vitro and in vivo. Precisely how Rab5 participates in these events remains to be determined. Considering that focal adhesions represent structures crucial to cell migration, we specifically asked whether Rab5 activation promoted focal adhesion disassembly and thereby facilitated migration and invasion of metastatic cancer cells. Pulldown and biosensor assays revealed that Rab5-GTP loading increased at the leading edge of migrating tumor cells. Additionally, targeting of Rab5 by different shRNA sequences, but not control shRNA, decreased Rab5-GTP levels, leading to reduced cell spreading, migration and invasiveness. Re-expression in knockdown cells of wild-type Rab5, but not the S34N mutant (GDP-bound), restored these properties. Importantly, Rab5 association with the focal adhesion proteins vinculin and paxillin increased during migration, and expression of wild-type, but not GDP-bound Rab5, accelerated focal adhesion disassembly, as well as FAK dephosphorylation on tyrosine 397. Finally, Rab5-driven invasiveness required focal adhesion disassembly, as treatment with the FAK inhibitor number 14 prevented Matrigel invasion and matrix metalloproteinase release. Taken together, these observations show that Rab5 activation is required to enhance cancer cell migration and invasion by promoting focal adhesion disassembly.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。