Notch2/3-DLL4 interaction in urothelial cancer cell lines supports a tumorigenic role of Notch signaling pathways in bladder carcinoma

尿路上皮癌细胞系中的 Notch2/3-DLL4 相互作用支持 Notch 信号通路在膀胱癌中的致瘤作用

阅读:3
作者:Chuan Zhang, Annett Weimann, Jens-Uwe Stolzenburg, Jochen Neuhaus, Mandy Berndt-Paetz

Discussion

The Notch signaling pathway can discriminate between different receptors and may play an essential role in the progression of bladder carcinoma. We demonstrated for the first time direct interactions between DLL4 and Notch2/3 associated to activation of canonical downstream Notch signaling and increased tumor cell behavior in human bladder cancer cells. Our data support the view that the Notch2/3-DLL4 axis plays an oncogenic role in bladder cancer. Further analyses of Notch signaling in bladder cancer can promote the development of tailored anti-DLL4/Notch bladder cancer therapies in the future.

Methods

The expression levels of Notch pathway components (Notch1-4, DLL4, HES1, HEY1) were assessed in papillary (G1: RT-4) and non-papillary bladder cancer cell lines (G2-G4: RT-112, 647-V, T-24, KU-19-19, CAL-29) by qRT-PCR and immunofluorescence. Expression data were validated by analyzing data from open-source databases (CCLE; TCGA). The endogeneous interactions of Notch2/Notch3 receptors and the ligand DLL4 were studied by in situ proximity ligation assay. Activation of canonical Notch signaling was evaluated by stimulation with recombinant DLL4 protein.

Results

All Notch targets were expressed, with Notch2 and Notch3 showing the highest expression levels. Endogeneous interactions between Notch2/3 and DLL4 were detected in all BCa cell lines. Amounts of Notch2/3-DLL4 complexes were high in RT-112 and CAL-29, while RT-4/647-V showed moderate and T-24, KU-19-19 low abundance. Proportion of (peri-) nuclear interaction complexes correlated negatively with Notch downstream targets. DLL4 stimulation resulted in canonical Notch pathway activation and increased tumor cell viability and proliferation in RT-4, 647-V, T-24 and KU-19-19 cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。