Reduced representation bisulfite sequencing (RRBS) of dairy goat mammary glands reveals DNA methylation profiles of integrated genome-wide and critical milk-related genes

奶山羊乳腺的简化代表性亚硫酸盐测序 (RRBS) 揭示了整合的全基因组和关键的牛奶相关基因的 DNA 甲基化谱

阅读:7
作者:Xiaoyan Zhang #, Sihuan Zhang #, Lin Ma, Enhui Jiang, Han Xu, Rui Chen, Qing Yang, Hong Chen, Zhuanjian Li, Xianyong Lan

Abstract

DNA methylation (DNAm), a major element of epigenetics, plays critical roles in individual development. Reduced representation bisulfite sequencing (RRBS) is an effective and economical method for analyzing the DNA methylation of a single base. The aims of this study were to determine the DNAm profiles of the methylation contexts (CGs and non-CGs) of lactation and dry periods of goat mammary glands using the RRBS, and to identify potential milk-related genes. The proportion of CG was the highest among all the sequence contexts. The highest CG levels (72.44% to 75.24%) occurred in the 3' UTR region, followed by the gene body region (61.14% to 65.45%). The non-CG levels were low compared to the CG levels. Bioinformatic analysis demonstrated that the CGs were mainly enriched at high methylation levels (>90%), while non-CGs were enriched at low methylation levels. Methylation levels of 95 and 54 genes in the lactation period were up- or downregulated, respectively, relative to the dry period, such as PPARα, RXRα and NPY genes. The bisulfite sequencing PCR results showed that the methylation level of goat PPARα gene during the lactation period was significant lower than in the dry period, while the methylation level of the RXRα gene was lower in the dry period than in the lactation period. Meanwhile, the methylation levels of human PPARα and NPY genes were significantly higher in MCF-7 than in MCF-10A cells. These findings provide essential information for DNA methylation profiles of goat mammary gland and detect some potential milk-related genes in dairy goats.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。