When a knockout is an Achilles' heel: Resistance to one potyvirus species triggers hypersusceptibility to another one in Arabidopsis thaliana

当基因敲除成为致命弱点时:对一种马铃薯Y病毒属的抗性会引发拟南芥对另一种马铃薯Y病毒属的超敏性

阅读:8
作者:Delyan Zafirov, Nathalie Giovinazzo, Anna Bastet, Jean-Luc Gallois

Abstract

The translation initiation factors 4E are a small family of major susceptibility factors to potyviruses. It has been suggested that knocking out these genes could provide genetic resistance in crops when natural resistance alleles, which encode functional eIF4E proteins, are not available. Here, using the well-characterized Arabidopsis thaliana-potyvirus pathosystem, we evaluate the resistance spectrum of plants knocked out for eIF4E1, the susceptibility factor to clover yellow vein virus (ClYVV). We show that besides resistance to ClYVV, the eIF4E1 loss of function is associated with hypersusceptibility to turnip mosaic virus (TuMV), a potyvirus known to rely on the paralog host factor eIFiso4E. On TuMV infection, plants knocked out for eIF4E1 display striking developmental defects such as early senescence and primordia development stoppage. This phenotype is coupled with a strong TuMV overaccumulation throughout the plant, while remarkably the levels of the viral target eIFiso4E remain uninfluenced. Our data suggest that this hypersusceptibility cannot be explained by virus evolution leading to a gain of TuMV aggressiveness. Furthermore, we report that a functional eIF4E1 resistance allele engineered by CRISPR/Cas9 base-editing technology successfully circumvents the increase of TuMV susceptibility conditioned by eIF4E1 disruption. These findings in Arabidopsis add to several previous findings in crops suggesting that resistance based on knocking out eIF4E factors should be avoided in plant breeding, as it could also expose the plant to the severe threat of potyviruses able to recruit alternative eIF4E copies. At the same time, it provides a simple model that can help understanding of the homeostasis among eIF4E proteins in the plant cell and what makes them available to potyviruses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。