Immunogenicity of intensively decellularized equine carotid arteries is conferred by the extracellular matrix protein collagen type VI

密集脱细胞马颈动脉的免疫原性是由细胞外基质蛋白 VI 型胶原蛋白赋予的

阅读:9
作者:Ulrike Boeer, Falk F R Buettner, Melanie Klingenberg, Georgios C Antonopoulos, Heiko Meyer, Axel Haverich, Mathias Wilhelmi

Abstract

The limited biocompatibility of decellularized scaffolds is an ongoing challenge in tissue engineering. Here, we demonstrate the residual immunogenicity of an extensively decellularized equine carotid artery (dEAC(intens)) and identify the involved immunogenic components. EAC were submitted to an elaborated intensified decellularization protocol with SDS/sodium desoxycholate for 72 h using increased processing volumes (dEAC(intens)), and compared to dEAC(ord) prepared by an ordinary protocol (40 h, normal volumes). Matrix integrity was checked via correlative volumetric visualization which revealed only minor structural changes in the arterial wall. In dEAC(intens), a substantial depletion of cellular components was obvious for smooth muscle actin (100%), MHC I complexes (97.8%), alphaGal epitops (98.4% and 91.3%) and for DNA (final concentration of 0.34 ± 0.16 ng/mg tissue). However, dEAC(intens) still evoked antibody formation in mice after immunization with dEAC(intens) extracts, although to a lower extent than dEAC(ord). Mouse plasma antibodies recognized a 140 kDa band which was revealed to contain collagen VI alpha1 and alpha2 chains via mass spectrometry of both 2D electrophoretically separated and immunoprecipitated proteins. Thus, even the complete removal of cellular proteins did not yield non-immunogenic dEAC as the extracellular matrix still conferred immunogenicity by collagen VI. However, as lower antibody levels were achieved by the intensified decellularization protocol, this seems to be a promising basis for further development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。