A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by shp2 tyrosine phosphatase

shp2酪氨酸磷酸酶控制人类和小鼠胚胎干细胞多能性和分化的保守机制

阅读:6
作者:Dongmei Wu, Yuhong Pang, Yuehai Ke, Jianxiu Yu, Zhao He, Lutz Tautz, Tomas Mustelin, Sheng Ding, Ziwei Huang, Gen-Sheng Feng

Abstract

Recent studies have suggested distinctive biological properties and signaling mechanisms between human and mouse embryonic stem cells (hESCs and mESCs). Herein we report that Shp2, a protein tyrosine phosphatase with two SH2 domains, has a conserved role in orchestration of intracellular signaling cascades resulting in initiation of differentiation in both hESCs and mESCs. Homozygous deletion of Shp2 in mESCs inhibited differentiation into all three germ layers, and siRNA-mediated knockdown of Shp2 expression in hESCs led to a similar phenotype of impaired differentiation. A small molecule inhibitor of Shp2 enzyme suppressed both hESC and mESC differentiation capacity. Shp2 modulates Erk, Stat3 and Smad pathways in ES cells and, in particular, Shp2 regulates BMP4-Smad pathway bi-directionally in mESCs and hESCs. These results reveal a common signaling mechanism shared by human and mouse ESCs via Shp2 modulation of overlapping and divergent pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。