Exogenous acetate attenuates inflammatory responses through HIF-1α-dependent glycolysis regulation in macrophage

外源性醋酸盐通过调节巨噬细胞中 HIF-1α 依赖的糖酵解来减轻炎症反应

阅读:6
作者:Na Li #, Yi Gong #, Yalin Zhu #, Bo Li #, Changli Wang, Zhefan Wang, Jun Wang, Jie Huang, Jinjun Bian, Yan Zhang

Abstract

Cytokine storm is a hallmark for acute systemic inflammatory disease like sepsis. Intrinsic microbiome-derived short-chain fatty acid (SCFAs) like acetate modulates immune cell function and metabolism has been well studied. However, it remains poorly investigated about the effects and the underlying mechanism of exogenous acetate in acute inflammation like sepsis. Here, we observed that serum acetate accumulates in patients undergoing abdominal gastrointestinal surgery and in septic mice. Short exposure to high-dose exogenous acetate protects mice from sepsis by inhibiting glycolysis in macrophages, both in vivo and in vitro. Hypoxia-inducible factor 1 subunit alpha (HIF-1α) stabilization or overexpression reverses the decreased glycolysis and pro-inflammatory cytokine production in macrophages and abrogates acetate's protective effect in septic mice. Meanwhile, we also found acetyl-CoA synthetase-2, but not GPR41 or GPR43, plays a key role in acetate's immunosuppressive effect. Acetate transiently increases acetyl-coenzyme A production, promoting histone acetylation and decreasing acetyl-transfer to NF-κB p65. These findings suggest that short exposure to mM-level acetate inhibits macrophage immune response linked to HIF-1α-dependent glycolysis. Taken together, we demonstrate short-term exposure of exogenous acetate could regulate inflammatory responses through attenuating HIF-1α-dependent glycolysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。