Preconcentration with Chlorella vulgaris combined with energy dispersive X-ray fluorescence spectrometry for rapid determination of Cd in water

小球藻富集-能量色散X射线荧光光谱法快速测定水中镉

阅读:4
作者:Tingting Gan, Nanjing Zhao, Gaofang Yin, Min Chen, Xiang Wang, Hui Hua

Abstract

Freshwater green algae Chlorella vulgaris was selected as an adsorbent, and a simple, rapid, economical and environmentally friendly method for the detection of heavy metal Cd in water samples based on preconcentration with C. vulgaris combined with energy dispersive X-ray fluorescence (EDXRF) spectrometry was proposed. Chlorella vulgaris could directly and rapidly adsorb Cd2+ without any pretreatment, and the maximum adsorption efficiency could be obtained when the contact time was 1 min with an optimal pH of 10. The obtained Cd-enriched thin samples after preconcentration with C. vulgaris by suction filtration of reaction solution had very good uniformity, which could be directly measured by EDXRF spectrometry, and the net integral fluorescence intensity of Cd Kα characteristic peak had a very good linear relationship with the initial concentration of Cd in the range of 0.703-74.957 µg ml-1 with a correlation coefficient of 0.9979. When the Cd thin samples with a Cd-enriched region of 15.1 mm in diameter were formed by the developed preconcentration method with suction filtration of 10 ml reaction solution, the detection limit of this method was 0.0654 µg ml-1, which was lower than the maximum allowable discharge concentration of Cd in various industrial wastewaters. The proposed method was simple to operate, and could effectively remove the influence of matrix effect of water samples and effectively improve the sensitivity and stability of EDXRF spectrometry directly detecting heavy metals in water samples, which was successfully applied to detect Cd in real water samples with satisfactory results, and the recoveries ranged from 94.80% to 116.94%. Moreover, this method can be applied to the rapid detection and early warning of excessive Cd in discharged industrial wastewaters. This work will provide a methodological basis for the development of rapid and online monitoring technology and instrument of heavy metal pollutants in water.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。