Optimization of Astaxanthin Recovery in the Downstream Process of Haematococcus pluvialis

雨生红球藻下游工艺中虾青素回收率的优化

阅读:6
作者:Inga K Koopmann, Simone Möller, Clemens Elle, Stefan Hindersin, Annemarie Kramer, Antje Labes

Abstract

Astaxanthin derived from Haematococcus pluvialis is a valuable metabolite applied in a wide range of products. Its extraction depends on a sophisticated series of downstream process steps, including harvesting, disruption, drying, and extraction, of which some are dependent on each other. To determine the processes that yield maximum astaxanthin recovery, bead milling, high-pressure homogenization, and no disruption of H. pluvialis biomass were coupled with spray-drying, vacuum-drying, and freeze-drying in all possible combinations. Eventually, astaxanthin was extracted using supercritical CO2. Optimal conditions for spray-drying were evaluated through the design of experiments and standard least squares regression (feed rate: 5.8 mL/min, spray gas flow: 400 NL/h, inlet temperature: 180 °C). Maximal astaxanthin recoveries were yielded using high-pressure homogenization and lyophilization (85.4%). All combinations of milling or high-pressure homogenization and lyophilization or spray-drying resulted in similar recoveries. Bead milling and spray-drying repeated with a larger spray-dryer resulted in similar astaxanthin recoveries compared with the laboratory scale. Smaller astaxanthin recoveries after the extraction of vacuum-dried biomass were mainly attributed to textural changes. Evaluation of these results in an economic context led to a recommendation for bead milling and spray-drying prior to supercritical CO2 extraction to achieve the maximum astaxanthin recoveries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。