Recursive seed amplification detects distinct α-synuclein strains in cerebrospinal fluid of patients with Parkinson's disease

递归种子扩增检测帕金森病患者脑脊液中不同的 α-突触核蛋白菌株

阅读:11
作者:Stefan Bräuer #, Iñaki Schniewind #, Elisabeth Dinter, Björn H Falkenburger

Abstract

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with a wide range of clinical phenotypes. Pathologically, it is characterized by neuronal inclusions containing misfolded, fibrillar alpha-synuclein (aSyn). Prion-like properties of aSyn contribute to the spread of aSyn pathology throughout the nervous system as the disease progresses. Utilizing these properties, seed amplification assays (SAA) enable the detection of aSyn pathology in living patients. We hypothesized that structurally distinct aSyn aggregates, or strains, may underlie the clinical heterogeneity of PD. To test this hypothesis, we recursively amplified aSyn fibrils from the cerebrospinal fluid (CSF) of 54 patients (34 people with PD and 20 controls). These fibrils were then characterized regarding SAA kinetic properties and detergent resistance. In addition, cultured cells were transfected with SAA products, and the extent of seeded aSyn pathology was quantified by staining for phosphorylated aSyn followed by automated high-throughput microscopy and image analysis. We found that fibrils, amplified from CSF by recursive SAA, exhibit two types of distinct biophysical properties and have different seeding capacities in cells. These properties are associated with clinical parameters and may therefore help explain the clinical heterogeneity in PD. Measuring aSyn strains may be relevant for prognosis and for therapies targeting aSyn pathology.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。