A human septin octamer complex sensitive to membrane curvature drives membrane deformation with a specific mesh-like organization

对膜曲率敏感的人类隔膜八聚体复合物以特定的网状组织驱动膜变形

阅读:7
作者:Koyomi Nakazawa, Gaurav Kumar, Brieuc Chauvin, Aurélie Di Cicco, Luca Pellegrino, Michael Trichet, Bassam Hajj, João Cabral, Anirban Sain, Stéphanie Mangenot, Aurélie Bertin

Abstract

Septins are cytoskeletal proteins interacting with the inner plasma membrane and other cytoskeletal partners. Being key in membrane remodeling processes, they often localize at specific micrometric curvatures. To analyze the behavior of human septins at the membrane and decouple their role from other partners, we used a combination of bottom-up in vitro methods. We assayed their ultrastructural organization, their curvature sensitivity, as well as their role in membrane reshaping. On membranes, human septins organize into a two-layered mesh of orthogonal filaments, instead of generating parallel sheets of filaments observed for budding yeast septins. This peculiar mesh organization is sensitive to micrometric curvature and drives membrane reshaping as well. The observed membrane deformations together with the filamentous organization are recapitulated in a coarse-grained computed simulation to understand their mechanisms. Our results highlight the specific organization and behavior of animal septins at the membrane as opposed to those of fungal proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。