Effects of Different Heat Treatments on Yak Milk Proteins on Intestinal Microbiota and Metabolism

不同热处理对牦牛乳蛋白肠道菌群及代谢的影响

阅读:5
作者:Senbiao Shu, Rong Jing, Liang Li, Wenhan Wang, Jinchao Zhang, Zhang Luo, Yuanyuan Shan, Zhendong Liu

Abstract

Dairy products are susceptible to modifications in protein oxidation during heat processing, which can lead to changes in protein function, subsequently affecting intestinal health. Despite being a unique nutritional source, yak milk has not been thoroughly examined for the effects of its oxidized proteins on intestinal microbiota and metabolism. Hence, this study employed different heat treatment methods (low-temperature pasteurization, high-temperature pasteurization, and high-temperature sterilization) to induce oxidation in yak milk proteins. The study then assessed the degree of oxidation in these proteins and utilized mice as research subjects. Using metagenomics and metabolomics methods, this study examined the structure of intestinal microbial communities and metabolic products in mice consuming oxidized yak milk. The results showed a decrease in carbonyl and total thiol contents of yak milk proteins after different heat treatments, indicating that heat treatment causes oxidation in yak milk proteins. Metagenomic analysis of mouse intestinal microbiota revealed significant changes in 66 genera. In the high-temperature sterilization group (H), key differential genera included Verrucomicrobiales, Verrucomicrobiae, Akkermansiaceae, and 28 others. The high-temperature pasteurization group (M) mainly consisted of Latilactobacillus, Bacillus, and Romboutsia. The low-temperature pasteurization group (L) primarily comprised of Faecalibacterium, Chaetomium, Paenibacillaceae, Eggerthella, Sordariales, and 33 others. Functionally, compared to the control group (C), the H group upregulated translation and energy metabolism functions, the L group the M group significantly upregulated metabolism of other amino acids, translation, and cell replication and repair functions. Based on metabolomic analysis, differential changes in mouse metabolites could affect multiple metabolic pathways in the body. The most significantly affected metabolic pathways were phenylalanine metabolism, vitamin B6 metabolism, steroid hormone biosynthesis, and pantothenate and CoA biosynthesis. The changes were similar to the functional pathway analysis of mouse metagenomics, affecting amino acid and energy metabolism in mice. In summary, moderate oxidation of yak milk proteins exhibits a positive effect on mouse intestinal microbiota and metabolism. In conclusion, yak milk has a positive effect on mouse intestinal microflora and metabolism, and this study provides a scientific basis for optimizing dairy processing technology and further developing and applying yak milk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。