Synthesis, Follow-Up, and Characterization of Polydopamine-like Coatings Departing from Micromolar Dopamine- o-Quinone Precursor Concentrations

聚多巴胺类涂层的合成、跟踪和表征,源自微摩尔多巴胺-邻醌前体浓度

阅读:5
作者:Andrés M Jaramillo, Ricardo Barrera-Gutiérrez, María T Cortés

Abstract

The understanding of oxidized species derived from the neurotransmitter dopamine (DA) is a relevant topic for both the medical field (Parkinson's disease) as well as for the field of materials science where the formation process of polydopamine (PDA) films is an active area of research. Polymers that interact strongly with almost all surfaces but have a low electrical conductivity have been obtained by the chemical oxidation of DA. Since electrical conductivity is a desired property for several applications, deposition alternatives such as electrochemical PDA synthesis have been proposed, but the results are still insufficient. In this context, we propose a new PDA chemical-electrochemical deposition process on glassy carbon electrodes. The chemical oxidation step that converts dopamine into dopamine-o-quinone previous to the electrochemical deposition was crucial to decrease the precursor concentration to the micromolar range. The PDA-like films synthesized by this method had high adhesion and low charge-transfer resistance, which was evidenced by impedance measurements and the successful electrodeposition of a polypyrrole coating on top of a PDA-like film. In addition, we observed that anodization of GC surfaces increases sensitivity toward six electroactive couples derived from DA oxidation in the pH regimes studied. These results show the complexity of the intermediates formed during the electrochemical polymerization of PDA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。