Host genetics and gut microbiota influence lipid metabolism and inflammation: potential implications for ALS pathophysiology in SOD1G93A mice

宿主遗传和肠道菌群影响脂质代谢和炎症:对SOD1G93A小鼠ALS病理生理学的潜在影响

阅读:2
作者:Elena Niccolai ,Leandro Di Gloria ,Maria Chiara Trolese ,Paola Fabbrizio ,Simone Baldi ,Giulia Nannini ,Cassandra Margotta ,Claudia Nastasi ,Matteo Ramazzotti ,Gianluca Bartolucci ,Caterina Bendotti ,Giovanni Nardo ,Amedeo Amedei

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder characterized by the progressive loss of motor neurons, with genetic and environmental factors contributing to its complex pathogenesis. Dysregulated immune responses and altered energetic metabolism are key features, with emerging evidence implicating the gut microbiota (GM) in disease progression. We investigated the interplay among genetic background, GM composition, metabolism, and immune response in two distinct ALS mouse models: 129Sv_G93A and C57Ola_G93A, representing rapid and slow disease progression, respectively.Using 16 S rRNA sequencing and fecal metabolite analysis, we characterized the GM composition and metabolite profiles in non-transgenic (Ntg) and SOD1G93A mutant mice of both strains. Our results revealed strain-specific differences in GM composition and functions, particularly in the abundance of taxa belonging to Erysipelotrichaceae and the levels of short and medium-chain fatty acids in fecal samples. The SOD1 mutation induces significant shifts in GM colonization in both strains, with C57Ola_G93A mice showing changes resembling those in 129 Sv mice, potentially affecting disease pathogenesis. ALS symptom progression does not significantly alter microbiota composition, suggesting stability.Additionally, we assessed systemic immunity and inflammatory responses revealing strain-specific differences in immune cell populations and cytokine levels.Our findings underscore the substantial influence of genetic background on GM composition, metabolism, and immune response in ALS mouse models. These strain-specific variations may contribute to differences in disease susceptibility and progression rates. Further elucidating the mechanisms underlying these interactions could offer novel insights into ALS pathogenesis and potential therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。