A rapid and sensitive assay for quantifying the activity of both aerobic and anaerobic ribonucleotide reductases acting upon any or all substrates

一种快速灵敏的检测方法,用于量化需氧和厌氧核苷酸还原酶对任何或所有底物的活性

阅读:10
作者:Talya S Levitz, Gisele A Andree, Rohan Jonnalagadda, Christopher D Dawson, Rebekah E Bjork, Catherine L Drennan

Abstract

Ribonucleotide reductases (RNRs) use radical-based chemistry to catalyze the conversion of all four ribonucleotides to deoxyribonucleotides. The ubiquitous nature of RNRs necessitates multiple RNR classes that differ from each other in terms of the phosphorylation state of the ribonucleotide substrates, oxygen tolerance, and the nature of both the metallocofactor employed and the reducing systems. Although these differences allow RNRs to produce deoxyribonucleotides needed for DNA biosynthesis under a wide range of environmental conditions, they also present a challenge for establishment of a universal activity assay. Additionally, many current RNR assays are limited in that they only follow the conversion of one ribonucleotide substrate at a time, but in the cell, all four ribonucleotides are actively being converted into deoxyribonucleotide products as dictated by the cellular concentrations of allosteric specificity effectors. Here, we present a liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based assay that can determine the activity of both aerobic and anaerobic RNRs on any combination of substrates using any combination of allosteric effectors. We demonstrate that this assay generates activity data similar to past published results with the canonical Escherichia coli aerobic class Ia RNR. We also show that this assay can be used for an anaerobic class III RNR that employs formate as the reductant, i.e. Streptococcus thermophilus RNR. We further show that this class III RNR is allosterically regulated by dATP and ATP. Lastly, we present activity data for the simultaneous reduction of all four ribonucleotide substrates by the E. coli class Ia RNR under various combinations of allosteric specificity effectors. This validated LC-MS/MS assay is higher throughput and more versatile than the historically established radioactive activity and coupled RNR activity assays as well as a number of the published HPLC-based assays. The presented assay will allow for the study of a wide range of RNR enzymes under a wide range of conditions, facilitating the study of previously uncharacterized RNRs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。