The link between intraneuronal N-truncated amyloid-β peptide and oxidatively modified lipids in idiopathic autism and dup(15q11.2-q13)/autism

特发性自闭症和 dup(15q11.2-q13)/自闭症中神经元内 N-截短淀粉样β肽与氧化修饰脂质之间的联系

阅读:7
作者:Janusz Frackowiak, Bozena Mazur-Kolecka, N Carolyn Schanen, W Ted Brown, Jerzy Wegiel

Background

Autism is a neurodevelopmental disorder of unknown etiopathogenesis associated with structural and functional abnormalities of neurons and increased formation of reactive oxygen species. Our previous study revealed enhanced accumulation of amino-terminally truncated amyloid-β (Aβ) in brain neurons and glia in children and adults with autism. Verification of the hypothesis that intraneuronal Aβ may cause oxidative stress was the

Conclusions

The results suggest a self-enhancing pathological process in autism that is initiated by intraneuronal deposition of N-truncated Aβ in childhood. The cascade of events includes altered APP metabolism and abnormal intracellular accumulation of N-terminally truncated Aβ which is a source of reactive oxygen species, which in turn increase the formation of lipid peroxidation products. The latter enhance Aβ deposition and sustain the cascade of changes contributing to metabolic and functional impairments of neurons in autism of an unknown etiology and caused by chromosome 15q11.2-q13 duplication.

Results

The relationships between neuronal Aβ and oxidative stress markers-4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA)-were examined in the frontal cortex from individuals aged 7-32 years with idiopathic autism or with chromosome 15q11.2-q13 duplications (dup(15)) with autism, and age-matched controls. Quantification of confocal microscopy images revealed significantly higher levels of neuronal N-truncated Aβ and HNE and MDA in idiopathic autism and dup(15)/autism than in controls. Lipid peroxidation products were detected in all mitochondria and lipofuscin deposits, in numerous autophagic vacuoles and lysosomes, and in less than 5% of synapses. Neuronal Aβ was co-localized with HNE and MDA, and increased Aβ levels correlated with higher levels of HNE and MDA. Conclusions: The results suggest a self-enhancing pathological process in autism that is initiated by intraneuronal deposition of N-truncated Aβ in childhood. The cascade of events includes altered APP metabolism and abnormal intracellular accumulation of N-terminally truncated Aβ which is a source of reactive oxygen species, which in turn increase the formation of lipid peroxidation products. The latter enhance Aβ deposition and sustain the cascade of changes contributing to metabolic and functional impairments of neurons in autism of an unknown etiology and caused by chromosome 15q11.2-q13 duplication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。