A comprehensive alanine-scanning mutagenesis study reveals roles for salt bridges in the structure and activity of Pseudomonas aeruginosa elastase

全面的丙氨酸扫描诱变研究揭示了盐桥在铜绿假单胞菌弹性蛋白酶结构和活性中的作用

阅读:7
作者:Fei Bian, Shousong Yue, Zhenying Peng, Xiaowei Zhang, Gao Chen, Jinhui Yu, Ning Xuan, Yuping Bi

Abstract

The relationship between salt bridges and stability/enzymatic activity is unclear. We studied this relationship by systematic alanine-scanning mutation analysis using the typical M4 family metalloprotease Pseudomonas aeruginosa elastase (PAE, also known as pseudolysin) as a model. Structural analysis revealed seven salt bridges in the PAE structure. We constructed ten mutants for six salt bridges. Among these mutants, six (Asp189Ala, Arg179Ala, Asp201Ala, Arg205Ala, Arg245Ala and Glu249Ala) were active and four (Asp168Ala, Arg198Ala, Arg253Ala, and Arg279Ala) were inactive. Five mutants were purified, and their catalytic efficiencies (kcat/Km), half-lives (t1/2) and thermal unfolding curves were compared with those of PAE. Mutants Asp189Ala and Arg179Ala both showed decreased thermal stabilities and increased activities, suggesting that the salt bridge Asp189-Arg179 stabilizes the protein at the expense of catalytic efficiency. In contrast, mutants Asp201Ala and Arg205Ala both showed slightly increased thermal stability and slightly decreased activity, suggesting that the salt bridge Asp201-Arg205 destabilizes the protein. Mutant Glu249Ala is related to a C-terminal salt bridge network and showed both decreased thermal stability and decreased activity. Furthermore, Glu249Ala showed a thermal unfolding curve with three discernable states [the native state (N), the partially unfolded state (I) and the unfolded state (U)]. In comparison, there were only two discernable states (N and U) in the thermal unfolding curve of PAE. These results suggest that Glu249 is important for catalytic efficiency, stability and unfolding cooperativity. This study represents a systematic mutational analyses of salt bridges in the model metalloprotease PAE and provides important insights into the structure-function relationship of enzymes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。