The nuclear progesterone receptor reduces post-sigh apneas during sleep and increases the ventilatory response to hypercapnia in adult female mice

核孕酮受体可减少成年雌性小鼠睡眠期间的叹息后呼吸暂停,并增强其对高碳酸血症的通气反应

阅读:4
作者:François Marcouiller, Ryma Boukari, Sofien Laouafa, Raphaël Lavoie, Vincent Joseph

Abstract

We tested the hypothesis that the nuclear progesterone receptor (nPR) is involved in respiratory control and mediates the respiratory stimulant effect of progesterone. Adult female mice carrying a mutation in the nPR gene (PRKO mice) and wild-type controls (WT) were implanted with an osmotic pump delivering vehicle or progesterone (4 mg/kg/day). The mice were instrumented with EEG and neck EMG electrodes connected to a telemetry transmitter. The animals were placed in a whole body plethysmograph 7 days after surgery to record ventilation, metabolic rate, EEG and neck EMGs for 4 consecutive hours. The animals were exposed to hypercapnia (5% CO2), hypoxia (12% O2) and hypoxic-hypercapnia (5% CO2+12% O2-5 min each) to assess chemoreflex responses. EEG and EMG signals were used to characterize vigilance states (e.g., wake, non-REM, and REM sleep). PRKO mice exhibited similar levels of minute ventilation during non-REM and REM sleep, and higher frequencies of sighs and post-sigh apneas during non-REM sleep compared to WT. Progesterone treatment increased minute ventilation and metabolic rate in WT and PRKO mice during non-REM sleep. In WT mice, but not in PRKO mice, the ventilation under hypercapnia and hypoxic hypercapnia was enhanced after progesterone treatment. We conclude that the nPR reduces apnea frequency during non-REM sleep and enhances chemoreflex responses to hypercapnia after progesterone treatment. These results also suggest that mechanisms other than nPR activation increase metabolic rate in response to progesterone treatment in adult female mice.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。