Background
IDH mutations frequently occur in diffuse gliomas and result in a neo-enzymatic activity that
Conclusion
These findings may suggest natural selection against the rare IDH1R132 mutations in human glioma due to toxicity caused by high levels of D-2-hydroxyglutarate.
Results
We determined the levels of D-2-hydroxyglutarate in glioma tissues with IDH1 mutations. D-2-hydroxyglutarate levels increased in the order of R132H-R132C-R132S/R132G/R132L. We expressed and purified IDH1 wild type and mutant protein for biochemical characterization. Enzyme kinetics of mutant IDH protein correlated well with D-2-hydroxyglutarate production in cells with R132H exhibiting the highest and R132L the lowest KM for α-ketoglutarate. Addition of D-2-hydroxyglutarate to the medium of cell lines revealed an inhibitory effect at higher concentrations. Migration of LN229 increased at lower D-2-hydroxyglutarate concentrations while higher concentrations showed no effect.
