Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin

通过与生物聚合物复合或结合的胶体凝胶颗粒稳定的 Pickering 乳液,可增强姜黄素的生物可及性和细胞吸收

阅读:4
作者:Andrea Araiza-Calahorra, Yunqing Wang, Christine Boesch, Yansheng Zhao, Anwesha Sarkar

Abstract

The aim of this study was to investigate the fate of curcumin (CUR)-loaded Pickering emulsions with complex interfaces during in vitro gastrointestinal transit and test the efficacy of such emulsions on improving the bioaccessibility and cellular uptake of CUR. CUR-loaded Pickering emulsions tested were whey protein nanogel particle-stabilized Pickering emulsions (CUR-EWPN) and emulsions displaying complex interfaces included 1) layer-by-layer dextran sulphate-coated nanogel-stabilized Pickering emulsions (CUR-DxS+EWPN) and 2) protein+dextran-conjugated microgel-stabilized Pickering emulsions (CUR-EWPDxM). The hypothesis was that the presence of complex interfacial material at the droplet surface would provide better protection to the droplets against physiological degradation, particularly under gastric conditions and thus, improve the delivery of CUR to Caco-2 intestinal cells. The emulsions were characterized using droplet sizing, apparent viscosity, confocal and cryo-scanning electron microscopy, zeta-potential, lipid digestion kinetics, bioaccessibility of CUR as well as cell viability and uptake by Caco-2 cells. Emulsion droplets with modified to complex interfacial composition (i.e. CUR-DxS+EWPN and CUR-EWPDxM) provided enhanced kinetic stability to the Pickering emulsion droplets against coalescence in the gastric regime as compared to droplets having unmodified interface (i.e. CUR-EWPN), whereas droplet coalescence occurred in intestinal conditions irrespective of the initial interfacial materials. A similar rate and extent of free fatty acid release occurred in all the emulsions during intestinal digestion (p > 0.05), which correlated with the bioaccessibility of CUR. Striking, CUR-DxS+EWPN and CUR-EWPDxM significantly improved cellular CUR uptake as compared to CUR-EWPN (p < 0.05). These results highlight a promising new strategy of designing gastric-stable Pickering emulsions with complex interfaces to improve the delivery of lipophilic bioactive compounds to the cells for the future design of functional foods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。