Extraction of coronary thrombus-derived exosomes from patients with acute myocardial infarction and its effect on the function of adventitial cells

急性心肌梗死患者冠状动脉血栓外泌体的提取及对心肌外膜细胞功能的影响

阅读:34
作者:Youfu He, Bo Wang, Yu Qian, Debin Liu, Qiang Wu

Background

Type I acute myocardial infarction (T1MI) has a very high morbidity and mortality rate. The role of thrombus-derived exosomes (TEs) in T1MI is unclear.

Conclusions

We demonstrate that TEs as a potential target and research direction for the treatment of heart failure after T1MI. TEs may regulate ferroptosis and autophagy in thrombus-adjacent cells through the enrichment of certain lncRNAs.

Methods

The objective of this study was to identify the optimal thrombolytic drug and concentration for extracting TEs. To this end, a series of time and concentration combinations were tested. Subsequently, the effect of TEs on thrombus-adjacent cells was investigated. Finally, we conducted lncRNA microarray analysis on the extracted TEs (GSE213115).

Results

TEs has been demonstrated to promote necrosis, autophagy, and ferroptosis of human cardiomyocytes, while inhibiting the proliferation and migration of human umbilical vein endothelial cells (HUVECs). Furthermore, TEs can stimulate the proliferation and migration of smooth muscle cells, and induce a transformation from a contractile to a secretory phenotype. Bioinformatics analysis revealed that five lncRNAs, AC068418.2, AC010186.3, AL031430.1, AC121333.1, and AL136526.1, exhibited significant differential expression in TE and regulated cell autophagy and ferroptosis by directly binding to TP53, TP63, and RELA, respectively. Conclusions: We demonstrate that TEs as a potential target and research direction for the treatment of heart failure after T1MI. TEs may regulate ferroptosis and autophagy in thrombus-adjacent cells through the enrichment of certain lncRNAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。