Inhibition of Fas ligand in NOD mice unmasks a protective role for IL-10 against insulitis development

抑制 NOD 小鼠的 Fas 配体揭示了 IL-10 对胰岛炎发展的保护作用

阅读:8
作者:Zuoxiang Xiao, Abdiaziz S Mohamood, Sophia Uddin, Rachel Gutfreund, Chiaki Nakata, Andrew Marshall, Hiroaki Kimura, Patrizio Caturegli, Karl L Womer, Yanfei Huang, Chunfa Jie, Shukti Chakravarti, Jonathan P Schneck, Hideo Yagita, Abdel Rahim A Hamad

Abstract

Type 1 diabetes mellitus (T1D) is an autoimmune disease caused by the destruction of pancreatic insulin-producing β cells by autoreactive T cells early in life. Despite daily insulin injections, patients typically develop cardiovascular and other complications; and intensive efforts are being directed toward identifying therapeutic targets to prevent the disease without directly impinging on the host defense. Fas ligand (FasL) is one potential target. Fas-FasL interactions primarily regulate T-cell homeostasis, not activation. Nevertheless, spontaneous gene mutation of Fas (called lpr mutation) or FasL (called the gld mutation) prevents autoimmune diabetes in nonobese diabetic (NOD) mice, the widely used model for T1D. Furthermore, although homozygous gld mutations cause age-dependent lymphoproliferation, limiting the gld mutation to one allele (NOD-gld/+) or treating NOD-wild-type mice with FasL-neutralizing monoclonal antibody completely prevents the disease development without causing lymphoproliferation or immune suppression. Herein, we show that the heterozygous gld mutation inhibits the accumulation of diabetogenic T cells in the pancreas, without interfering with their proliferation and expansion in the draining pancreatic lymph nodes. Pancreata from NOD-gld/+ mice contained B cells that expressed CD5 and produced IL-10, which was critical for maintenance of the disease resistance because its neutralization with an IL-10 receptor-blocking monoclonal antibody allowed accumulation of CD4 T cells in the pancreas and led to insulitis development. The results provide novel insights into the pathogenesis of T1D that could have important therapeutic implications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。