Effects of light spectra and 15N pulses on growth, leaf morphology, physiology, and internal nitrogen cycling in Quercus variabilis Blume seedlings

光谱和 15N 脉冲对栎树幼苗生长、叶片形态、生理和内部氮循环的影响

阅读:7
作者:Jun Gao, Jinsong Zhang, Chunxia He, Qirui Wang

Abstract

Light spectra of sunlight transmittance can generate an interactive effect with deposited nitrogen (N) on regenerated plants across varied shading conditions. Total N content in understory plants can be accounted for by both exogeneous and endogenous sources of derived N, but knowledge about the response of inner N cycling to interactive light and N input effects is unclear. We conducted a bioassay on Chinese cork oak (Quercus variabilis Blume) seedlings subjected to five-month N pulsing with 15NH4Cl (10.39 atom %) at 120 mg 15N plant-1 under the blue (48.5% blue, 33.7% green, and 17.8% red), red (14.6% blue, 71.7% red, 13.7% green), and green (17.4% blue, 26.2% red, 56.4% green) lighting-spectra. Half of the seedlings were fed twice a week using a 250 ppm N solution with micro-nutrients, while the other half just received distilled water. Two factors showed no interaction and neither affected growth and morphology. Compared to the red-light spectrum, that in blue light increased chlorophyll and soluble protein contents and glutamine synthetase (GS) activity, root N concentration, and N derived from the pulses. The green-light spectrum induced more biomass allocation to roots and a higher percentage of N derived from internal reserves compared to the red-light spectrum. The 15N pulses reduced the reliance on N remobilization from acorns but strengthened shoot biomass, chlorophyll content, GS activity, and N concentration. In conclusion, light spectrum imposed an independent force from external N pulse to modify the proportion of N derived from internal sources in total N content in juvenile Q. variabilis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。