Characterization of a novel ATR-dependent, Chk1-independent, intra-S-phase checkpoint that suppresses initiation of replication in Xenopus

表征一种新的 ATR 依赖性、Chk1 独立的 S 期内检查点,该检查点可抑制 Xenopus 中的复制启动

阅读:7
作者:M Gloria Luciani, Maren Oehlmann, J Julian Blow

Abstract

In most eukaryotes, replication origins fire asynchronously throughout S-phase according to a precise timing programme. When replication fork progression is inhibited, an intra-S-phase checkpoint is activated that blocks further origin firing and stabilizes existing replication forks to prevent them undergoing irreversible collapse. We show that chromatin incubated in Xenopus egg extracts displays a replication-timing programme in which firing of new replication origins during S phase depends on the continued activity of S-phase-inducing cyclin-dependent kinases. We also show that low concentrations of the DNA-polymerase inhibitor aphidicolin, which only slightly slows replication-fork progression, strongly suppress further initiation events. This intra-S-phase checkpoint can be overcome by caffeine, an inhibitor of the ATM/ATR checkpoint kinases, or by neutralizing antibodies to ATR. However, depletion or inhibition of Chk1 did not abolish the checkpoint. We could detect no significant effect on fork stability when this intra-S-phase checkpoint was inhibited. Interestingly, although caffeine could prevent the checkpoint from being activated, it could not rescue replication if added after the timing programme would normally have been executed. This suggests that special mechanisms might be necessary to reverse the effects of the intra-S-phase checkpoint once it has acted on particular origins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。