MiR-34a-5p promotes hepatic gluconeogenesis by suppressing SIRT1 expression

MiR-34a-5p 通过抑制 SIRT1 表达促进肝糖异生

阅读:6
作者:Yiru Wang, Feiye Zhou, Mingzhu Li, Yumei Zhang, Na Li, Li Shao

Abstract

Elevated hepatic gluconeogenesis is a major contributor of fasting hyperglycemia in diabetes. MicroRNAs (miRNAs) are tightly linked to glucose metabolism, but their role in hepatic gluconeogenesis remains largely unkown. In this current study, miR-34a-5p expression was significantly increased in liver tissues of db/db mice. Overexpression of miR-34a-5p promoted hepatic glucose production in mouse primary hepatocytes with increased expressions of gluconeogenic genes while miR-34a-5p inhibition displayed a contrary action. MiR-34a-5p overexpression in mouse primary hepatocytes repressed SIRT1 expression. SIRT1 inhibition by EX527 blocked phosphoenolpyruvate carboxykinase (PEPCK) protein degradation and enhanced hepatic gluconeogenesis. Treatment of A485 (a CBP/p300 inhibitor) decreased miR-34a-5p and PEPCK expressions in the livers of db/db mice, but elevated SIRT1 protein expression. In mouse primary hepatocytes, A485 exhibited a similar result. Overexpression of miR-34a-5p attenuated A485-inhibited gluconeogenic gene expressions and A485-induced SIRT1 protein expression. Finally, after miR-34a-5p was inhibited in the livers of db/db mice, hepatic glucose production and gluconeogenic gene expressions were markedly lowered. Our findings highlight a critical role of miR-34a-5p in the regulation of hepatic gluconeogenesis and miR-34a-5p may be a potential target in the treatment of type 2 diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。