TDP-43 pathology is sufficient to drive axon initial segment plasticity and hyperexcitability of spinal motoneurones in vivo in the TDP43-ΔNLS model of Amyotrophic Lateral Sclerosis

TDP-43 病理足以在肌萎缩侧索硬化症的 TDP43-ΔNLS 模型中驱动体内轴突起始节段可塑性和脊髓运动神经元的过度兴奋

阅读:15
作者:Svetlana Djukic #, Zhenxiang Zhao #, Lasse Mathias Holmsted Jørgensen, Anna Normann Bak, Dennis Bo Jensen, Claire Francesca Meehan

Abstract

A hyperexcitability of the motor system is consistently observed in Amyotrophic Lateral Sclerosis (ALS) and has been implicated in the disease pathogenesis. What drives this hyperexcitability in the vast majority of patients is unknown. This is important to know as existing treatments simply reduce all neuronal excitability and fail to distinguish between pathological changes and important homeostatic changes. Understanding what drives the initial pathological changes could therefore provide better treatments. One challenge is that patients represent a heterogeneous population and the vast majority of cases are sporadic. One pathological feature that almost all (~97%) cases (familial and sporadic) have in common are cytoplasmic aggregates of the protein TDP-43 which is normally located in the nucleus. In our experiments we investigated whether this pathology was sufficient to increase neuronal excitability and the mechanisms by which this occurs. We used the TDP-43(ΔNLS) mouse model which successfully recapitulates this pathology in a controllable way. We used in vivo intracellular recordings in this model to demonstrate that TDP-43 pathology is sufficient to drive a severe hyper-excitability of spinal motoneurones. Reductions in soma size and a lengthening and constriction of axon initial segments were observed, which would contribute to enhanced excitability. Resuppression of the transgene resulted in a return to normal excitability parameters by 6-8 weeks. We therefore conclude that TDP-43 pathology itself is sufficient to drive a severe but reversible hyperexcitability of spinal motoneurones.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。