Independent and combined effects of ultrasound and transglutaminase on the gel properties and in vitro digestion characteristics of bay scallop (Argopecten irradians) adductormuscle

超声波和谷氨酰胺转胺酶单独及联合作用对海湾扇贝闭壳肌凝胶特性及体外消化特性的影响

阅读:4
作者:Jiaqi Feng, Jie Wang, Tong Zhang, Yaqiong Liu, Ran Suo, Qianyun Ma

Abstract

The effects of transglutaminase (TGase) addition (0.4-1.2 g/100g), ultrasound (120-720 W, 20 min), and their combination on the gel properties and in vitro digestion characteristics of bay scallop adductor muscle were studied. The gel strength of the gel sample with TGase content of 0.8 g/100g (TG-0.8) was 58.2% higher than that of the control sample (CON). The gel sample treated with ultrasound at 480 W (UT-480) had the highest gel strength. The strength of the gel prepared by combination of 0.8 g/100g TGase and 360 W ultrasound (UT-TG) was 82.3% higher than that of CON. The whiteness and water holding capacity of the gel increased regardless of the addition of TGase or ultrasound treatment. SDS-PAGE patterns showed that the myosin heavy chain of the treated samples became thinner, and the changes of actin and tropomyosin were not significant. The scanning electron microscopy results of gel samples prepared by ultrasound combined with TGase showed a denser structure, which was related to the lowest total sulfhydryl content and TCA-soluble peptide content. The results of dynamic rheology show that the UT-TG sample had the highest G' value, followed by TG-0.8. The in vitro digestion characteristics of the selected gel samples were also discussed. The degree of protein hydrolysis and the content of free amino acids in TG-0.8 samples were the lowest, which improved after ultrasound treatment. Overall, the combination of appropriate ultrasound treatment and TGase addition provides an effective means for improving gel properties and digestibility of scallop surimi product.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。