Use of Micellar Delivery Systems to Enhance Curcumin's Stability and Microbial Photoinactivation Capacity

使用胶束输送系统增强姜黄素的稳定性和微生物光灭活能力

阅读:6
作者:Victor Ryu, Silvette Ruiz-Ramirez, Piyanan Chuesiang, Lynne A McLandsborough, David Julian McClements, Maria G Corradini

Abstract

Microbial photoinactivation using ultraviolet (UV) or visible light can be enhanced by photosensitizers. This study assessed the efficacy of encapsulating a food-grade photosensitizer (curcumin) in surfactant micelles on its water dispersibility, chemical stability, and antimicrobial activity. Stock curcumin-surfactant solutions were prepared with Surfynol 465 (S465) or Tween 80 (T80) (5 mM sodium citrate buffer). The antimicrobial activity of curcumin-loaded surfactant solutions was determined by monitoring the inactivation of Escherichia coli O157: H7 and Listeria innocua after 5-min irradiation with UV-A light (λ = 365 nm). The solutions mixed with the bacterial suspensions contained 1 µM curcumin and each surfactant below, near, and above their critical micelle concentrations (CMCs). The addition of surfactants at any level to the curcumin solution enhanced its dispersibility, stability, and efficacy as a photosensitizer, thereby enhancing its antimicrobial activity. Gram-positive bacteria were more susceptible than Gram-negative bacteria when curcumin-loaded micelles were used against them. The photoinactivation efficacy of curcumin-surfactant solutions depended on the pH of the solution (low > high), surfactant type (S465 > T80), and the amount of surfactant present (below CMC ≥ near CMC > above CMC = unencapsulated curcumin). This result suggests that excessive partitioning of curcumin into micelles reduced its ability to interact with microbial cells. Synergistic antimicrobial activity was observed when S465 was present below or near the CMC with curcumin at pH 3.5, which could be attributed to a more effective interaction of the photosensitizer with the cell membranes as supported by the fluorescence lifetime micrographs. The use of a micelle-based delivery system facilitates adsorption and generation of reactive oxygen species in the immediate environment of the microbial cell, enhancing photoinactivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。