Kinetic modeling of countercurrent saccharification

逆流糖化动力学建模

阅读:14
作者:Chao Liang, Chao Gu, M Nazmul Karim, Mark Holtzapple

Background

Countercurrent saccharification is a promising way to minimize enzyme loading while obtaining high conversions and product concentrations. However, in countercurrent saccharification experiments, 3-4 months are usually required to acquire a single steady-state data point. To save labor and time, simulation of this process is necessary to test various reaction conditions and determine the optimal operating point. Previously, a suitable kinetic model for countercurrent saccharification has never been reported. The Continuum Particle Distribution Modeling (CPDM) satisfactorily predicts countercurrent fermentation using mixed microbial cultures that digest various feedstocks. Here, CPDM is applied to countercurrent enzymatic saccharification of lignocellulose.

Conclusions

The CPDM model was used to simulate multi-stage countercurrent saccharification of α-cellulose. The model predictions agreed well with the experimental glucose concentrations and conversions. CPDM prediction results showed that the enzyme-addition location, enzyme loading, LRT, and SLR significantly affected the glucose concentration and conversion. Compared to batch saccharification at the same conversion, product concentration, and reactor volume, countercurrent saccharification is particularly beneficial when the product concentration is low.

Results

CPDM was used to simulate multi-stage countercurrent saccharifications of a lignocellulose model compound (α-cellulose). The modified HCH-1 model, which accurately predicts long-term batch saccharification, was used as the governing equation in the CPDM model. When validated against experimental countercurrent saccharification data, it predicts experimental glucose concentrations and conversions with the average errors of 3.5% and 4.7%, respectively. CPDM predicts conversion and product concentration with varying enzyme-addition location, total stage number, enzyme loading, liquid residence time (LRT), and solids loading rate (SLR). In addition, countercurrent saccharification was compared to batch saccharification at the same conversion, product concentration, and reactor volume. Results show that countercurrent saccharification is particularly beneficial when the product concentration is low. Conclusions: The CPDM model was used to simulate multi-stage countercurrent saccharification of α-cellulose. The model predictions agreed well with the experimental glucose concentrations and conversions. CPDM prediction results showed that the enzyme-addition location, enzyme loading, LRT, and SLR significantly affected the glucose concentration and conversion. Compared to batch saccharification at the same conversion, product concentration, and reactor volume, countercurrent saccharification is particularly beneficial when the product concentration is low.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。