Mesenchymal/stromal gene expression signature relates to basal-like breast cancers, identifies bone metastasis and predicts resistance to therapies

间充质/基质基因表达特征与基底样乳腺癌有关,可识别骨转移并预测对治疗的耐药性

阅读:10
作者:Cristina Marchini, Maura Montani, Georgia Konstantinidou, Rita Orrù, Silvia Mannucci, Giorgio Ramadori, Federico Gabrielli, Anna Baruzzi, Giorgio Berton, Flavia Merigo, Stefania Fin, Manuela Iezzi, Brigitte Bisaro, Andrea Sbarbati, Massimo Zerani, Mirco Galiè, Augusto Amici

Background

Mounting clinical and experimental evidence suggests that the shift of carcinomas towards a mesenchymal phenotype is a common paradigm for both resistance to therapy and tumor recurrence. However, the mesenchymalization of carcinomas has not yet entered clinical practice as a crucial diagnostic paradigm. Methodology/principal findings: By integrating in silico and in vitro studies with our epithelial and mesenchymal tumor models, we compare herein crucial molecular pathways of previously described carcinoma-derived mesenchymal tumor cells (A17) with that of both carcinomas and other mesenchymal phenotypes, such as mesenchymal stem cells (MSCs), breast stroma, and various types of sarcomas. We identified three mesenchymal/stromal-signatures which A17 cells shares with MSCs and breast stroma. By using a recently developed computational approach with publicly available microarray data, we show that these signatures: 1) significantly relates to basal-like breast cancer subtypes; 2) significantly relates to bone metastasis; 3) are up-regulated after hormonal treatment; 4) predict resistance to neoadjuvant therapies. Conclusions/significance: Our

Significance

Our results demonstrate that mesenchymalization is an intrinsic property of the most aggressive tumors and it relates to therapy resistance as well as bone metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。