The requirement for Cdc48/p97 in nuclear protein quality control degradation depends on the substrate and correlates with substrate insolubility

核蛋白质量控制降解中 Cdc48/p97 的要求取决于底物,并与底物不溶性相关

阅读:7
作者:Pamela S Gallagher, Sarah V Clowes Candadai, Richard G Gardner

Abstract

Cdc48, known as p97 or valosin-containing protein (VCP) in mammals, is an abundant AAA-ATPase that is essential for many ubiquitin-dependent processes. One well-documented role for Cdc48 is in facilitating the delivery of ubiquitylated misfolded endoplasmic reticulum proteins to the proteasome for degradation. By contrast, the role for Cdc48 in misfolded protein degradation in the nucleus is unknown. In the budding yeast Saccharomyces cerevisiae, degradation of misfolded proteins in the nucleus is primarily mediated by the nuclear-localized ubiquitin-protein ligase San1, which ubiquitylates misfolded nuclear proteins for proteasomal degradation. Here, we find that, although Cdc48 is involved in the degradation of some San1 substrates, it is not universally required. The difference in the requirement for Cdc48 correlates with the insolubility of the San1 substrate. The more insoluble the substrate, the more its degradation requires Cdc48. Expression of Cdc48-dependent San1 substrates in mutant cdc48 cells results in increased substrate insolubility, larger inclusion formation and reduced cell viability. Substrate ubiquitylation is increased in mutant cdc48 cells, suggesting that Cdc48 functions downstream of San1. Taken together, we propose that Cdc48 acts, in part, to maintain the solubility or reverse the aggregation of insoluble misfolded proteins prior to their proteasomal degradation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。