Therapeutic role of mesenchymal stem cell-derived extracellular vesicles in neuroinflammation and cognitive dysfunctions induced by binge-like ethanol treatment in adolescent mice

间充质干细胞来源的细胞外囊泡在青春期小鼠暴饮类乙醇治疗引起的神经炎症和认知功能障碍中的治疗作用

阅读:11
作者:Susana Mellado, Carlos M Cuesta, Sandra Montagud, Marta Rodríguez-Arias, Victoria Moreno-Manzano, Consuelo Guerri, María Pascual

Aims

To evaluate whether the intravenous administration of MSC-derived EVs is capable of reducing neuroinflammation, myelin and synaptic alterations, and the cognitive dysfunction induced by binge-like ethanol treatment in adolescent mice. Materials &

Background

Extracellular vesicles (EVs) are heterogeneous membrane vesicles secreted by cells in extracellular spaces that play an important role in intercellular communication under both normal and pathological conditions. Mesenchymal stem cells (MSC) are anti-inflammatory and immunoregulatory cells capable of secreting EVs, which are considered promising molecules for treating immune, inflammatory, and degenerative diseases. Our previous studies demonstrate that, by activating innate immune receptors TLR4 (Toll-like receptor 4), binge-like ethanol exposure in adolescence causes neuroinflammation and neural damage. Aims: To evaluate whether the intravenous administration of MSC-derived EVs is capable of reducing neuroinflammation, myelin and synaptic alterations, and the cognitive dysfunction induced by binge-like ethanol treatment in adolescent mice. Materials &

Conclusion

Taken together, these results provide the first evidence for the therapeutic potential of the MSC-derived EVs in the neuroimmune response and cognitive dysfunction induced by binge alcohol drinking in adolescence.

Methods

MSC-derived EVs obtained from adipose tissue were administered in the tail vein (50 microg/dose, one weekly dose) to female WT adolescent mice treated intermittently with ethanol (3.0 g/kg) during two weeks.

Results

MSC-derived EVs from adipose tissue ameliorate ethanol-induced up-regulation of inflammatory genes (e.g., COX-2, iNOS, MIP-1α, NF-κB, CX3CL1, and MCP-1) in the prefrontal cortex of adolescent mice. Notably, MSC-derived EVs also restore the myelin and synaptic derangements, and the memory and learning impairments, induced by ethanol treatment. Using cortical astroglial cells in culture, our results further confirm that MSC-derived EVs decrease inflammatory genes in ethanol-treated astroglial cells. This, in turn, confirms in vivo findings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。