Global transcriptomic analysis of ethanol tolerance response in Salmonella Enteritidis

肠炎沙门氏菌乙醇耐受反应的整体转录组分析

阅读:5
作者:Shoukui He, Yan Cui, Rui Dong, Jiang Chang, Hua Cai, Hong Liu, Xianming Shi

Abstract

Adaptation to sublethal amounts of ethanol enables Salmonella Enteritidis to survive under normally lethal ethanol conditions, which is referred to as the ethanol tolerance response (ETR). To uncover mechanisms underlying this adaptative response, RNA-seq and RT-qPCR techniques were employed to reveal global gene expression patterns in S. Enteritidis after sublethal ethanol treatment. It was observed that 811 genes were significantly differentially expressed in ethanol-treated cells compared with control cells, among which 328 were up-regulated and 483 were down-regulated. Functional analysis revealed that these genes were enriched in different pathways, including signal transduction, membrane transport, metabolism, transcription, translation, and cell motility. Specifically, a couple of genes encoding histidine kinases and response regulators in two-component systems were up-regulated to activate sensing and signaling pathways. Membrane function was also influenced by ethanol treatment since ABC transporter genes for transport of glutamate, phosphate, 2-aminoethylphosphonate, and osmoprotectant were up-regulated, while those for transport of iron complex, manganese, and ribose were down-regulated. Accompanied with this, diverse gene expression alterations related to the metabolism of amino acids, carbohydrates, vitamins, and nucleotides were observed, which suggested nutritional requirements for S. Enteritidis to mount the ETR. Furthermore, genes associated with ribosomal units, bacterial chemotaxis, and flagellar assembly were generally repressed as a possible energy conservation strategy. Taken together, this transcriptomic study indicates that S. Enteritidis employs multiple genes and adaptation pathways to develop the ETR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。