Effect of Artificial Aging Treatment on the Mechanical Properties and Regulation of Precipitated Phase Particles of High-Pressure Die-Cast Thin-Wall AlSi10MnMg Longitudinal Carrier

人工时效处理对高压压铸薄壁AlSi10MnMg纵向载体力学性能及析出相粒子的调控

阅读:7
作者:Xu Zhao, Ping Wang, Yang Yang, Song Wang, Qiang Zhao, Jingying Sun

Abstract

This study investigates the artificial aging treatment process for AlSi10MnMg longitudinal carriers with optimal strength and ductility. Experimental results illustrate that the peak strength is observed under single-stage aging at 180 °C × 3 h, with a tensile strength of 332.5 MPa, Brinell hardness of 133.0 HB, and elongation of 5.56%. As aging time increases, tensile strength and hardness initially increase and then decrease, while elongation displays an inverse pattern. The amount of secondary phase particles at grain boundaries increases with aging temperature and holding time, but stabilizes as aging progresses; the secondary phase particles begin to grow, eventually weakening the alloy's strengthening effect. The fracture surface exhibits mixed fracture characteristics, including ductile dimples and brittle cleavage steps. Range analysis indicates that the influence of distinct parameters on mechanical properties post-double-stage aging is as follows: first-stage aging time, first-stage aging temperature, followed again by second-stage aging time, and second-stage aging temperature. For peak strength, the optimal double-stage aging process includes a first-stage aging temperature of 100 °C × 3 h and a second-stage aging temperature of 180 °C × 3 h.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。