Cytosine modifications modulate the chromatin architecture of transcriptional enhancers

胞嘧啶修饰调节转录增强子的染色质结构

阅读:16
作者:Elise A Mahé, Thierry Madigou, Aurélien A Sérandour, Maud Bizot, Stéphane Avner, Frédéric Chalmel, Gaëlle Palierne, Raphaël Métivier, Gilles Salbert

Abstract

Epigenetic mechanisms are believed to play key roles in the establishment of cell-specific transcription programs. Accordingly, the modified bases 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) have been observed in DNA of genomic regulatory regions such as enhancers, and oxidation of 5mC into 5hmC by Ten-eleven translocation (TET) proteins correlates with enhancer activation. However, the functional relationship between cytosine modifications and the chromatin architecture of enhancers remains elusive. To gain insights into their function, 5mC and 5hmC levels were perturbed by inhibiting DNA methyltransferases and TETs during differentiation of mouse embryonal carcinoma cells into neural progenitors, and chromatin characteristics of enhancers bound by the pioneer transcription factors FOXA1, MEIS1, and PBX1 were interrogated. In a large fraction of the tested enhancers, inhibition of DNA methylation was associated with a significant increase in monomethylation of H3K4, a characteristic mark of enhancer priming. In addition, at some specific enhancers, 5mC oxidation by TETs facilitated chromatin opening, a process that may stabilize MEIS1 binding to these genomic regions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。