Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography

高分辨率质谱结合液相色谱法检测尿液预后生物标志物并对 IgA 肾病进行分类

阅读:5
作者:Shiva Kalantari, Dorothea Rutishauser, Shiva Samavat, Mohsen Nafar, Leyla Mahmudieh, Mostafa Rezaei-Tavirani, Roman A Zubarev

Abstract

IgA nephropathy is the most common cause of primary glomerulonephritis. There are different pathologic biopsy-based scoring systems in use, but there is no consensus among nephrologists yet regarding the best classification method. Our aim was to test urine proteomics as a non-invasive method for classification of IgA nephropathy. This aim was pursued by discovering novel prognostic protein biomarkers in urine, and linking them to pathogenesis of the disease through known signaling and metabolic pathways. 13 urine samples of the patients with biopsy-proven IgA nephropathy were analyzed via two proteomics approaches: nanoflow LC-MS/MS and GeLC-MS/MS. The results of label-free quantification were subjected to multivariate statistical analysis, which could classify patients into two groups, broadly corresponding to the primary and advance stages. The proteome classification correlated well with biopsy-based scoring systems, especially endocapillary hypercellularity score of the Oxford's classification. Differentially excreted candidate proteins were found as potential prognostic biomarkers: afamin, leucine-rich alpha-2-glycoprotein, ceruloplasmin, alpha-1-microgolbulin, hemopexin, apolipoprotein A-I, complement C3, vitamin D-binding protein, beta-2-microglobulin, and retinol-binding protein 4. Pathway analysis suggested impairment of Extra Cellular Matrix (ECM)-Receptor Interaction pathways as well as activation of complement and coagulation pathway in progression of IgA nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。