Ovatodiolide targets chronic myeloid leukemia stem cells by epigenetically upregulating hsa-miR-155, suppressing the BCR-ABL fusion gene and dysregulating the PI3K/AKT/mTOR pathway

Ovatodiolide 通过表观遗传上调 hsa-miR-155、抑制 BCR-ABL 融合基因和失调 PI3K/AKT/mTOR 通路来靶向慢性粒细胞白血病干细胞

阅读:6
作者:Yue-Xing Tu, Shi-Bing Wang, Luo-Qin Fu, Shuang-Shuang Li, Qian-Peng Guo, Yi Wu, Xiao-Zhou Mou, Xiang-Min Tong

Abstract

Chronic myeloid leukemia (CML) is a myeloproliferative pathology, originating from the hematopoietic cancer stem cells (hCSCs) due to the Bcl-Abl Philadelphia chromosome transformation. However, targeting these hCSCs as an effective anti-CML strategy is relatively less explored. Ovatodiolide (Ova) is a natural diterpenoid isolate of Anisomeles indica with broad anticancer activity. In this study, we investigated the anti-hCSCs potential of Ova against CD34+/CD38-, CD34+/CD38+, and unsorted K562 cell lines using flow cytometry, western blot, RT-PCR, genomic mapping, and tumorsphere formation assays. We demonstrated that compared to unsorted K562 and CD34+/CD38+, CD34+/CD38- cells were significantly enriched with Oct4, Sox2, CD133, Bcr-Abl, p-CrkL and p-Stat5 protein and/or mRNA. Furthermore, we showed that Ova alone or by enhancing the therapeutic potential of Imatinib, reduced the viability of CML cell lines, dose-dependently, irrespective of the cancer stemness, as well as markedly inhibit the Bcr-Abl, p-CrkL, Stat5, and MDR protein expression levels in CD34+ cells. Mechanistic investigations revealed a significant up-regulation of hsa-miR-155, which resulted in the reduction of dysregulating the PIK3CA expression in Ova-treated K562 CD34+/CD38- cells. Additionally, Ova alone or in combination with Imatinib suppressed the hCSC traits of the CD34+/CD38- cells, resulting in loss of their ability to form tumorspheres, enhanced apoptosis, increase in the Bax/Bcl-2 ratio, and dysregulation of the PI3K/AKT/mTOR signaling pathway. Together, these results demonstrate the PI3K/AKT/mTOR signaling-mediated anti-hCSC effect of Ova in CML, as well as suggest a likely role for Ova as a small molecule PI3K/mTOR dual inhibitor, thus, extending its potential benefit to other mTOR-mediated pathologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。