Cytotoxic CD8+ T cell ablation enhances the capacity of regulatory T cells to delay viral elimination in Theiler's murine encephalomyelitis

细胞毒性 CD8+ T 细胞消融可增强调节性 T 细胞延缓泰勒氏鼠脑脊髓炎病毒消除的能力

阅读:8
作者:Malgorzata Ciurkiewicz, Vanessa Herder, Muhammad Akram Khan, Ann-Kathrin Uhde, René Teich, Stephan Floess, Wolfgang Baumgärtner, Jochen Huehn, Andreas Beineke

Abstract

Theiler's murine encephalomyelitis (TME) of susceptible mouse strains is a commonly used infectious animal model for multiple sclerosis. The study aim was to test the hypothesis whether cytotoxic T cell responses account for the limited impact of regulatory T cells on antiviral immunity in TME virus-induced demyelinating disease (TMEV-IDD) resistant C57BL/6 mice. TME virus-infected C57BL/6 mice were treated with (i) interleukin-2/-anti-interleukin-2-antibody-complexes to expand regulatory T cells ("Treg-expansion"), (ii) anti-CD8-antibodies to deplete cytotoxic T cells ("CD8-depletion") or (iii) with a combination of Treg-expansion and CD8-depletion ("combined treatment") prior to infection. Results showed that "combined treatment", but neither sole "Treg-expansion" nor "CD8-depletion," leads to sustained hippocampal infection and virus spread to the spinal cord in C57BL/6 mice. Prolonged infection reduces myelin basic protein expression in the spinal cord together with increased accumulation of β-amyloid precursor protein in axons, characteristic of myelin loss and axonal damage, respectively. Chronic spinal cord infection upon "combined treatment" was also associated with increased T and B cell recruitment, accumulation of CD107b+ microglia/macrophages and enhanced mRNA expression of interleukin (IL)-1α, IL-10 and tumor necrosis factor α. In conclusion, data revealed that the suppressive capacity of Treg on viral elimination is efficiently boosted by CD8-depletion, which renders C57BL/6 mice susceptible to develop chronic neuroinfection and TMEV-IDD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。