GiRAFR improves gRNA detection and annotation in single-cell CRISPR screens

GiRAFR 改善了单细胞 CRISPR 筛选中的 gRNA 检测和注释

阅读:8
作者:Qian Yu, Paulien Van Minsel, Eva Galle, Bernard Thienpont

Abstract

Novel methods that combine single cell RNA-seq with CRISPR screens enable high-throughput characterization of transcriptional changes caused by genetic perturbations. Dedicated software is however lacking to annotate CRISPR guide RNA (gRNA) libraries and associate them with single cell transcriptomes. Here, we describe a CRISPR droplet sequencing (CROP-seq) dataset. During analysis, we observed that the most commonly used method fails to detect mutant gRNAs. We therefore developed a python tool to identify and characterize intact and mutant gRNAs, called GiRAFR. We show that mutant gRNAs are dysfunctional, and failure to detect and annotate them leads to an inflated estimate of the number of untransformed cells, attenuated downregulation of target genes, as well as an underestimated multiplet frequency. These findings are mirrored in publicly available datasets, where we find that up to 35% of cells are transduced with a mutant gRNA. Applying GiRAFR hence stands to improve the annotation and quality of single cell CRISPR screens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。