Movement disorders are linked to TDP-43 burden in the substantia nigra of FTLD-TDP brain donors

运动障碍与 FTLD-TDP 脑捐献者的黑质中 TDP-43 负担有关

阅读:6
作者:Luigi Fiondella, Priya Gami-Patel, Christian A Blok, Annemieke J M Rozemuller, Jeroen J M Hoozemans; Netherlands Brain Bank; Yolande A L Pijnenburg, Marta Scarioni, Anke A Dijkstra

Abstract

Movement disorders (MD) have been linked to degeneration of the substantia nigra (SN) in Parkinson's disease and include bradykinesia, rigidity, and tremor. They are also present in frontotemporal dementia (FTD), where MD have been linked to frontotemporal lobar degeneration with tau pathology (FTLD-tau). Although MD can also occur in FTLD with TDP-43 pathology (FTLD-TDP), the local pathology in the SN of FTLD-TDP patients with MD is currently unexplored. The aims of this study are to characterize the frequency and the nature of MD in a cohort of FTLD-TDP brain donors and to investigate the relationship between the presence of MD, the nigral neuronal loss, and the TDP-43 burden in the SN. From our cohort of FTLD-TDP patients (n = 53), we included 13 donors who presented with MD (FTLD-MD+), and nine age-sex matched donors without MD (FTLD-MD-) for whom the SN was available. In these donors, the TDP-43 burden and the neuronal density in the SN were assessed with ImageJ and Qupath software. The results were compared between the two groups using T-test. We found that the TDP-43 burden in the SN was higher in FTLD-MD+ (mean 3,43%, SD ± 2,7) compared to FTLD-MD- (mean 1,21%, SD ± 0,67) (p = 0,04), while no significant difference in nigral neuronal density was found between the groups (p = 0,09). 17% of FTLD-TDP patients developed MD, which present as symmetric akinetic-rigid parkinsonism or CBS. Given the absence of a significant nigral neuronal cell loss, TDP-43 induced neuronal dysfunction could be sufficient to cause MD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。