Discussion
Newly diagnosed LN patients presented a significant disturbance in bone metabolism, characterized by an impaired bone formation and mineralization, associated with an increase in resorption parameters. Glucocorticoid use, vitamin D insufficiency and inflammation might be involved in the physiopathology of bone metabolism disturbance.
Methods
We studied 15 pre-menopausal patients with ≤2 months of diagnosed SLE and LN. Patients with prior kidney or bone disease were excluded. In addition to biochemical evaluation (including 25-hydroxyvitamin D3 [25(OH)D] and Monocyte Chemotactic Protein (MCP1) dosage), we performed bone biopsies followed by osteoblast culture, histomorphometric and immunohistochemistry analysis.
Results
LN patients presented a mean age of 29.5±10 years, a proteinuria of 4.7±2.9 g/day and an estimated glomerular filtration rate (GFR) of 37(31-87) ml/min/1,73 m2. They were on glucocorticoid therapy for 34±12 days. All patients presented vitamin D insufficiency (9.9±4.4 ng/ml, range 4-20). Urinary MCP1 correlated negatively with 25(OH)D (r = -0.53, p = 0.003) and positively with serum deoxypyridinoline (r = 0.53, p = 0.004). Osteoblasts isolated from LN bone biopsies presented a significantly higher expression of MCP-1 when compared to controls (32.0.±9.1 vs. 22.9±5.3 mean fluorescence intensities, p = 0.01). LN patients presented a significantly reduced osteoid volume, osteoid thickness, osteoid surface, mineralization surface and bone formation rate, associated with an increased eroded surface and osteoclast surface. Patient's bone specimens demonstrated a reduced immunostaining for osteoprotegerin (0.61±0.82 vs. 1.08±0.50%, p = 0.003), and an increased expression of Receptor Activator of NF-κB ligand (RANKL) (1.76±0.92 vs. 0.41±0.28%, p<0.001) when compared to controls.
