Examining the role of paraoxonase 2 in the dopaminergic system of the mouse brain

研究对氧磷酶 2 在小鼠大脑多巴胺系统中的作用

阅读:5
作者:Jacqueline M Garrick, Khoi Dao, Lucio G Costa, Judit Marsillach, Clement E Furlong

Background

Paraoxonase 2 (PON2) is an intracellular antioxidant enzyme located at the inner mitochondrial membrane. Previous studies have found PON2 to be an important antioxidant in a variety of cellular systems, such as the cardiovascular and renal system. Recent work has also suggested that PON2 plays an important role in the central nervous system (CNS), as decreased PON2 expression in the CNS leads to higher oxidative stress and subsequent cell toxicity. However, the precise role of PON2 in the CNS is still largely unknown, and what role it may play in specific regions of the brain remains unexamined. Dopamine metabolism generates considerable oxidative stress and antioxidant function is critical to the survival of dopaminergic neurons, providing a potential mechanism for PON2 in the dopaminergic system.

Conclusions

Our findings suggest PON2 deficiency significantly impacts the dopaminergic system at the transcript level and may play a role in mitigating oxidative stress in this system further downstream through dopamine receptor signaling.

Methods

In this study, we investigated the role of PON2 in the dopaminergic system of the mouse brain by comparing transcript and protein expression of dopaminergic-related genes in wildtype (WT) and PON2 deficient (PON2-def) mouse striatum, and exposing WT cultured primary neurons to dopamine receptor agonists.

Results

We found alterations in multiple key dopaminergic genes at the transcript level, however many of these changes were not observed at the protein level. In cultured neurons, PON2 mRNA and protein were increased upon exposure to quinpirole, a dopamine receptor 2/3 (DRD2/3) agonist, but not fenoldopam, a dopamine receptor 1/5 (DRD1/5) agonist, suggesting a receptor-specific role in dopamine signaling. Conclusions: Our findings suggest PON2 deficiency significantly impacts the dopaminergic system at the transcript level and may play a role in mitigating oxidative stress in this system further downstream through dopamine receptor signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。