The Study of an Adaptive Bread Maker Using Machine Learning

利用机器学习研究自适应面包机

阅读:6
作者:Jooho Lee, Youngjin Kim, Sangoh Kim

Abstract

Bread is one of the most consumed foods in the world, and modern food processing technologies using artificial intelligence are crucial in providing quality control and optimization of food products. An integrated solution of sensor data and machine learning technology was determined to be appropriate for identifying real-time changing environmental variables and various influences in the baking process. In this study, the Baking Process Prediction Model (BPPM) created by data-based machine learning showed excellent performance in monitoring and analyzing real-time sensor and vision data in the baking process to predict the baking stages by itself. It also has the advantage of improving the quality of bread. The volumes of bread made using BPPM were 127.54 ± 2.54, 413.49 ± 2.59, 679.96 ± 1.90, 875.79 ± 2.46, and 1260.70 ± 3.13, respectively, which were relatively larger than those made with fixed baking time (p < 0.05). The developed system is evaluated to have great potential to improve precision and efficiency in the food production and processing industry. This study is expected to lay the foundation for the future development of artificial intelligence and the food industry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。