Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase

通过表达新鉴定的异源脂肪酶的大肠杆菌全细胞生物催化剂在有机介质中进行短链风味酯的合成

阅读:10
作者:Guillaume Brault, François Shareck, Yves Hurtubise, François Lépine, Nicolas Doucet

Abstract

Short-chain aliphatic esters are small volatile molecules that produce fruity and pleasant aromas and flavors. Most of these esters are artificially produced or extracted from natural sources at high cost. It is, however, possible to 'naturally' produce these molecules using biocatalysts such as lipases and esterases. A gene coding for a newly uncovered lipase was isolated from a previous metagenomic study and cloned into E. coli BL21 (DE3) for overexpression using the pET16b plasmid. Using this recombinant strain as a whole-cell biocatalyst, short chain esters were efficiently synthesized by transesterification and esterification reactions in organic media. The recombinant lipase (LipIAF5-2) showed good affinity toward glyceryl trioctanoate and the highest conversion yields were obtained for the transesterification of glyceryl triacetate with methanol. Using a simple cetyl-trimethylammonium bromide pretreatment increased the synthetic activity by a six-fold factor and the whole-cell biocatalyst showed the highest activity at 40°C with a relatively high water content of 10% (w/w). The whole-cell biocatalyst showed excellent tolerance to alcohol and short-chain fatty acid denaturation. Substrate affinity was equally effective with all primary alcohols tested as acyl acceptors, with a slight preference for methanol. The best transesterification conversion of 50 mmol glyceryl triacetate into isoamyl acetate (banana fragrance) provided near 100% yield after 24 hours using 10% biocatalyst loading (w/w) in a fluidized bed reactor, allowing recycling of the biocatalyst up to five times. These results show promising potential for an industrial approach aimed at the biosynthesis of short-chain esters, namely for natural flavor and fragrance production in micro-aqueous media.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。