Directed evolution of aminoglycoside phosphotransferase (3') type IIIa variants that inactivate amikacin but impose significant fitness costs

氨基糖苷类磷酸转移酶 (3') IIIa 型变体的定向进化,可灭活阿米卡星,但会造成显著的适应度成本

阅读:7
作者:Joseph R Kramer, Ichiro Matsumura

Abstract

The rules that govern adaptive protein evolution remain incompletely understood. Aminoglycoside aminotransferase (3') type IIIa (hereafter abbreviated APH(3')-IIIa) is a good model enzyme because it inactivates kanamycin efficiently; it recognizes other aminoglycoside antibiotics, including amikacin, but not nearly as well. Here we direct the evolution of APH(3')-IIIa variants with increased activity against amikacin. After four rounds of random mutation and selection in Escherichia coli, the minimum inhibitory concentration of amikacin rose from 18 micrograms/mL (wild-type enzyme) to over 1200 micrograms/mL (clone 4.1). The artificially evolved 4.1 APH(3')-IIIa variant exhibited 19-fold greater catalytic efficiency (k cat/K M) than did the wild-type enzyme in reactions with amikacin. E. coli expressing the evolved 4.1 APH(3')-IIIa also exhibited a four-fold decrease in fitness (as measured by counting colony forming units in liquid cultures with the same optical density) compared with isogenic cells expressing the wild-type protein under non-selective conditions. We speculate that these fitness costs, in combination with the prevalence of other amikacin-modifying enzymes, hinder the evolution of APH(3')-IIIa in clinical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。