Characterization of ACE2 naturally occurring missense variants: impact on subcellular localization and trafficking

ACE2 天然错义变体的表征:对亚细胞定位和运输的影响

阅读:5
作者:Sally Badawi #, Feda E Mohamed #, Nesreen R Alkhofash, Anne John, Amanat Ali, Bassam R Ali

Background

Human angiotensin-converting enzyme 2 (ACE2), a type I transmembrane receptor physiologically acting as a carboxypeptidase enzyme within the renin-angiotensin system (RAS), is a critical mediator of infection by several severe acute respiratory syndrome (SARS) corona viruses. For instance, it has been demonstrated that ACE2 is the primary receptor for the SARS-CoV-2 entry to many human cells through binding to the viral spike S protein. Consequently, genetic variability in ACE2 gene has been suggested to contribute to the variable clinical manifestations in COVID-19. Many of those genetic variations result in missense variants within the amino acid sequence of ACE2. The potential effects of those variations on binding to the spike protein have been speculated and, in some cases, demonstrated experimentally. However, their effects on ACE2 protein folding, trafficking and subcellular targeting have not been established.

Conclusion

Although the selected missense variants display no significant change in ACE2 trafficking and subcellular localization, this does not rule out their effect on viral susceptibility and severity. Further studies are required to investigate the effect of ACE2 variants on its expression, binding, and internalization which might explain the variable clinical manifestations associated with the infection.

Results

In this study we aimed to examine the potential effects of 28 missense variants (V801G, D785N, R768W, I753T, L731F, L731I, I727V, N720D, R710H, R708W, S692P, E668K, V658I, N638S, A627V, F592L, G575V, A501T, I468V, M383I, G173S, N159S, N149S, D38E, N33D, K26R, I21T, and S19P) distributed across the ACE2 receptor domains on its subcellular trafficking and targeting through combinatorial approach involving in silico analysis and experimental subcellular localization analysis. Our data show that none of the studied missense variants (including 3 variants predicted to be deleterious R768W, G575V, and G173S) has a significant effect on ACE2 intracellular trafficking and subcellular targeting to the plasma membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。