Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress

ATR 对人类 RPA 的磷酸化可刺激 DNA 合成,并防止 DNA 复制应激期间 ssDNA 积累

阅读:4
作者:Vitaly M Vassin, Rachel William Anantha, Elena Sokolova, Shlomo Kanner, James A Borowiec

Abstract

ATR is an essential kinase activated in response to DNA-replication stress, with a known target being the RPA2 subunit of human replication protein A (RPA). We find that S33-RPA2 phosphorylation by ATR occurs primarily in the late-S and G2 phases, probably at sites of residual stalled DNA-replication forks, with S33-P-RPA2 contained within nuclear repair centers. Although cells in which endogenous RPA2 was ;replaced' with an RPA2 protein with mutations T21A and S33A (T21A/S33A-RPA) had normal levels of DNA replication under non-stress conditions, the mutant cells were severely deficient in the amount of DNA synthesis occurring during replication stress. These cells also had abnormally high levels of chromatin-bound RPA, indicative of increased amounts of single-stranded DNA (ssDNA) and showed defective recovery from stress. Cells replaced with the mutant RPA2 also generated G1 cells with a broader DNA distribution and high levels of apoptosis following stress, compared with cells expressing wild-type RPA2. Surprisingly, cells expressing the wild-type RPA2 subunit had increased levels of stress-dependent DNA breaks. Our data demonstrate that RPA phosphorylation at the T21 and S33 sites facilitates adaptation of a DNA-replication fork to replication stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。